Electrical and Mechanical Performance of Zirconia-Nickel Functionally Graded Materials

author

Abstract:

In the present work, six-layered (Zirconia/Nickel) functionally graded materials were fabricated via powder metallurgy technique (PMT). The microstructure, fracture surface and the elemental analysis of the prepared components were studied, and their linear shrinkage, electrical conductivity, fracture toughness and Vickers hardness were evaluated. The results show that the linear shrinkage of the non-graded composites was reduced with the nickel content. The electrical conductivity of the YSZ/Ni was strongly depended on its nickel content. The electrical conductivity as a function of nickel content had a typical ‘S’ shape curve. Vickers’s hardness of YSZ/Ni was lower than that of pure ceramic YSZ and was reduced by decreasing the density of the layer of YSZ/Ni FGM, which was attributed to the pores in intermediate layers in the FGM after sintering stage. Also, the fracture toughness obtained by the non-graded composite increases with an increase in nickel content from 0 % to 50% Ni. The functionally graded materials exhibited a high fracture toughness (31 MPa m1/2) compared to the non-graded composite.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

Mixed Mode Crack Propagation of Zirconia/Nickel Functionally Graded Materials

Zirconia-nickel functionally graded materials were obtained by powder metallurgy technique. The microstructure, residual stress, fracture toughness and Vickers hardness were investigated. Mixed-mode fracture response of YSZ /Ni functionally graded materials was examined utilizing the three point bending test and finite element method (Cosmos/M 2.7). The results show that the stress intensity fac...

full text

Disk Vibration Analysis of Functionally Graded Materials

Perforated discs have many applications in different parts of industry. By making such disks of functionally graded materials, more capabilities can be obtained from them. Vibration analysis of these kinds of disks can help us make them more efficient. In this paper, modeling and evaluation of disk vibration of functionally graded materials with regard to thickness were carried out using Abaqus...

full text

Functionally Graded Materials

Thermoelastic simulation of functionally graded materials is practically important for engineers. Here, the extension and assembly of our two previous papers (Computational Mechanics 2006, 38, p51-60; Engineering Analysis with Boundary Elements 2008, 32, p704-712) is presented to evaluate the transient temperature and stress distributions in two-dimensional functionally graded solids. In this c...

full text

Fundamental Solutions and Functionally Graded Materials

A fundamental solution (or Green’s function) is a singular solution of a governing partial differential equation (PDE). They can be constructed easily when the PDE has constant coefficients. They are useful for reducing boundary-value problems to boundary integral equations (BIEs). We begin by describing simple properties of fundamental solutions, and then comment on the use and construction of...

full text

Free Vibration Analysis of Functionally Graded Materials Non-uniform Beams

In this article, nonuniformity effects on free vibration analysis of functionally graded beams is discussed. variation in material properties is modeled after Powerlaw and exponential models and the non-uniformity is assumed to be exponentially varying in the width along the beams with constant thickness. Analytical solution is achieved for free vibration with simply supported conditions. It is...

full text

Adiabatic Shear Bands in Functionally Graded Materials

The initiation and propagation of adiabatic shear bands (ASBs) in functionally graded materials (FGMs) deformed at high strain rates in plane-strain tension have been studied. An ASB is a narrow region, usually a few micrometers wide, of intense plastic deformation that forms after softening of the material due to its being heated up and the evolution of damage in the form of porosity has overc...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 26  issue 4

pages  375- 382

publication date 2013-04-01

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023